

Lab session 1: Preparation of nanoporous TiO₂ films

Objective:

Prepare the paste of TiO_2 nanocolloids and nanostructured films that will be the base for the next experiences in the study of water splitting, electrochromism, dye solar cells and pollutants degradation

Material

TiO₂ nanoparticles (Degussa P25) 5-10 mL Pipetes

Distilled water Beaker Ethanol Magnet Terpineol Mortar

Ethyl cellulose Ultrasonic Bath

FTO Glass Stirrer

Glass bar Three roller mill

Procedure:

First we will prepare the TiO₂ paste from TiO₂ nanoparticles from Degussa powder. Then the paste will be deposited on a FTO substrate.

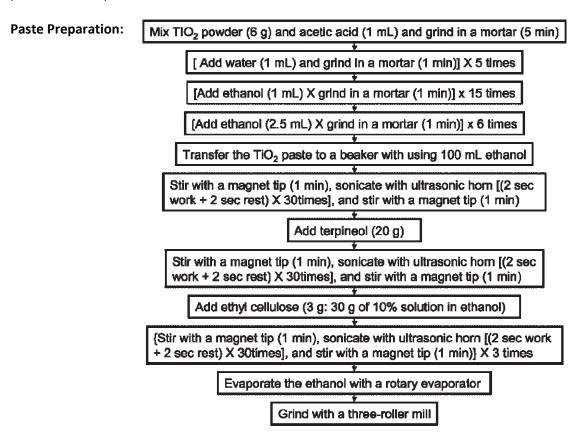


Fig. 1: Esqueme of paste preparation

Nanotechnology ET-1039

Preparation of nanocrystalline-TiO2 electrodes

To prepare the DSC working electrodes, the FTO glass used as current collector, FTO (TEC-15) needs to be cleaned thoroughly:

- Clean in detergent and water (with hands)
- Sonicate in a detergent solution using an ultrasonic bath for 15 min.
- Rinse with water
- Rinse with ethanol
- Sonicate in ethanol for 10 minutes
- Dry the FTO

Meanwhile, grind the paste by the 3-roller mill.

Doctor blade coating:

- Fix the FTO with scotch tape into a clean surface (the conducting side upwards)
- Deposit some paste in one extreme of the FTO layer
- With a glass rod (blade) extend the paste over the FTO.
- Kept in a clean box for 3 min so that the paste can relax to reduce the surface irregularity
- Dry the film for 6 min at 125°C.
- Heat the electrodes coated with the TiO₂ pastes gradually under an airflow at 325°C for 5 min, at 375°C for 5 min, at 450°C for 15 min and 500°C for 15 min. Then allow them to cool down slowly. Alternatively, heat the simple in an oven with the same cycle.
- Cut the glass at the desidered size.

References:

¹ Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M. K.; Liska, P.; Péchy, P.; Grätzel, M. Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. *Progress in Photovoltaics: Research and Applications* **2007**, *15* (7), 603-612.