

Perovskite Solar Cells

ET - 1039. Nanotechnology

Francisco Javier Andreu Borràs Eloy Celades Gil

Index

- 1. What is perovskite
- 2. Advantages
- 3. Disadvantages
- 4. Future objectives
- 5. Applications

1. What is perovskite?

The perovskite was discovered in 1839, by Lev Perovsky (CaTiO3).

Perovskite is a crystalline structure, that can be formed by many materials.

Combination of materials provides good absorption properties.

S-UPM (1026x) FhG-ISE (117x) NREL Para Network (1arge-area) Alta Alta SunPower (1arge-area) Alta Oxford PV Panasonic Alta Alta SunPower (1arge-area) Alta Oxford PV Solar Ford SunFord V Solar Ford SunFord V Alta Alta SunPower (1arge-area) Alta Oxford PV Solar Ford SunFord V Alta Oxford V Solar Ford SunFord V Alta Oxford V Alta

2. Advantages. Efficiency

Perovskite Solar Cells Efficiency:

- In 2009 -> 3,8 %
- In 2019 -> 24,2 %

Silicon solar cells only have incremented a 1,6% since 2012

Tandem Solar Cells (Perovskite over silicon solar cells):

• In 2019 -> 28,0 %

2. Advantages. Composition and structure

The most common composition is formed by lead halide and methylammonium with:

- Bromine (MAPbBr3)
- Iodide (MAPbI3)

Structure: ABX3

- A: organic or inorganic compound
- B: metal
- X: halide (I, Br or Cl)

2. Advantages. Low cost

Silicon solar cells:

• 56 c€ / W

Perovskite Solar Cells:

• 7,5 - 15 c€ / W

Difference in 1 MW installation: SSC: 600.000,00 410.000,00

PSC: 150.000,00

2. Advantages. Easily fabricable

Most common methods:

- depositing chemicals
- spin-coating
- spraying
- painting

Less fabrication temperature (200°C) than silicon (900°C).

2. Advantages. Flexibility and lightweight

The differents process of fabrication of Perovskite Solar Cells allow, films around 1 micron.

This allow more applications than Silicon Solar Cells, working over many surfaces and more resistant to vibration.

3. Disadvantages. Stability

Stability problems are a consequence of different causers:

- 1. Moisture
- 2. UV rays
- 3. Temperature
- 4. Internal migration of ions

Perovskite is not capable to resist without degrading:

> Efficiency losses

3. Disadvantages. Pb presence

- Every time the perovskite suffers from degradation, the main substance that gets separated is Pb.
- Pb supposes a big problem for environment
- Solutions : good encapsulation

4. Future objectives: Encapsulation

Different procedures studied has not worked well.

Encapsulating is the alternative.

Some methods:

- Carbon nanotubes
- AI2O3
- Glass barrier

4. Future objectives: Encapsulation

"Enhancing Moisture and Water Resistance in Perovskite Solar Cells by Encapsulation with Ultrathin Plasma Polymers" by CSIC-University of Sevilla

With a relative humidity of 30-60%, for 30 days the degradation of the encapsulated perovskite solar cell was observed to be very low compared to that which was not encapsulated.

5. Future applications

5. Future applications

Thanks for your attention, any question?